北京拓扑智鑫环境科技股份有限公司是北京市高新技术企业,自主研发的“大气恶臭(ODOR)污染在线监测和预警系统及PM2.5、PM10、VOC、水质监测等在线监测产品..[详细]
技术文章

硝化-反硝化耦合机制主导贫氮生态系统氧化亚氮脉冲排放


土壤氮转化过程影响生态系统生产力及土壤氮素的损失途径和潜力,微生物硝化和反硝化过程产生氧化亚氮(N2O)释放到大气中,使土壤成为大气N2O的主要来源,一般认为施肥农田土壤是强排放源,自然土壤则为弱排放源。然而,温带至寒带自然生态系统在冬春转换期被广泛观测到脉冲式排放,导致自然土壤在全球N2O排放源中的贡献率大幅增加。截止目前,冻融期自然土壤爆发排放的机制尚不明确,大多数研究认为该时期土壤环境有利于反硝化过程主导N2O产生。

  近半个多世纪以来,稳定同位素稀释技术(the 15N pool dilution technique)被广泛应用于土壤氮转化过程研究,该技术的应用难点在于添加同位素标记物会激发贫氮生态系统微生物同化作用,因此大幅高估微生物固持速率。大气所胡晓霞博士和刘春岩研究员利用双标记物稳定同位素稀释技术,创建了针对贫氮自然系统土壤微生物固持速率的定量方法即改进差值法(the reformed difference method,图1),从而能够准确表征土壤氮循环的完整动态;通过年尺度土壤总氮转化速率、无机氮库大小和N2O排放动态的综合监测,首次揭示出硝化-反硝化耦合机制主导青藏高原放牧高寒草甸冻融期N2O脉冲排放。该研究更新了反硝化过程主导冻融期N2O产生的传统认知,解开了贫氮自然生态系统冻融期反硝化底物来源的谜团,即硝化速率的抬升为反硝化过程提供关键底物,耦合机制而非单一微生物过程主导了冻融期N2O的产生,成果发表于农林科学1区Top期刊Soil Biology & Biochemistry(土壤科学领域排名第一)。

  文章链接:Xiaoxia Hu, Chunyan Liu*, Xunhua Zheng, Michael Dannenmann, Klaus Butterbach-Bahl, Zhisheng Yao, Wei Zhang, Rui Wang, Guangmin Cao, 2019. Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biology and Biochemistry 138: 107576. https://doi.org/10.1016/j.soilbio.2019.107576

图1:创建“改进差值法”用于贫氮生态系统微生物固持速率的准确定量



Copyright© 2003-2012    版权所有   公司地址:北京丰台区丰台北路7号 邮 编:110023
联系电话:18601047241 010-63716292 邮箱:admin@bjtpzx.com